Indefinite Almost Paracontact Metric Manifolds
نویسندگان
چکیده
In this paper we introduce the concept of (ε)-almost paracontact manifolds, and in particular, of (ε)-para Sasakian manifolds. Several examples are presented. Some typical identities for curvature tensor and Ricci tensor of (ε)-para Sasakian manifolds are obtained. We prove that if a semi-Riemannian manifold is one of flat, proper recurrent or proper Ricci-recurrent, then it can not admit an (ε)-para Sasakian structure. We show that, for an (ε)-para Sasakian manifold, the conditions of being symmetric, semisymmetric or of constant sectional curvature are all identical. It is shown that a symmetric spacelike (resp. timelike) (ε)-para Sasakian manifold M is locally isometric to a pseudohyperbolic space H ν (1) (resp. pseudosphere S n ν (1)). In last, it is proved that for an (ε)-para Sasakian manifold, the conditions of being Ricci-semisymmetric, Ricci-symmetric and Einstein are all identical. Mathematics Subject Classification: 53C25, 53C50.
منابع مشابه
On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملLightlike Submanifolds of a Para-Sasakian Manifold
In the present paper we study lightlike submanifolds of almost paracontact metric manifolds. We define invariant lightlike submanifolds. We study radical transversal lightlike submanifolds of para-Sasakian manifolds and investigate the geometry of distributions. Also we introduce a general notion of paracontact Cauchy-Riemann (CR) lightlike submanifolds and we derive some necessary and sufficie...
متن کاملOn (k, μ)-Paracontact Metric Manifolds
The object of this paper is to study (k, μ)-paracontact metric manifolds with qusi-conformal curvature tensor. It has been shown that, h-quasi conformally semi-symmetric and φ-quasi-conformally semi-symmetric (k, μ)-paracontact metric manifold with k 6= −1 cannot be an η-Einstein manifold.
متن کاملSpecial connections in almost paracontact metric geometry
Two types of properties for linear connections (natural and almost paracontact metric) are discussed in almost paracontact metric geometry with respect to four linear connections: Levi-Civita, canonical (Zamkovoy), Golab and generalized dual. Their relationship is also analyzed with a special view towards their curvature. The particular case of an almost paracosymplectic manifold giv...
متن کاملWarped Product Semi-Invariant Submanifolds in Almost Paracontact Riemannian Manifolds
We show that there exist no proper warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds such that totally geodesic submanifold and totally umbilical submanifold of the warped product are invariant and anti-invariant, respectively. Therefore, we consider warped product semi-invariant submanifolds in the form N N⊥×fNT by reversing two factor manifolds NT and N⊥. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010